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Abstract
A pairing model for nucleons, introduced by Richardson in 1966, which
describes proton–neutron pairing as well as proton–proton and neutron–neutron
pairing, is re-examined in the context of the quantum inverse scattering method.
Specifically, this shows that the model is integrable by enabling the explicit
construction of the conserved operators. We determine the eigenvalues of these
operators in terms of the Bethe ansatz, which in turn leads to an expression for
the energy eigenvalues of the Hamiltonian.

PACS numbers: 03.65.Fd, 31.15.Hz, 02.30.Ik

1. Introduction

Pairing model Hamiltonians have again become the focus of many theoretical condensed
matter investigations due to the fact that the experimental work on metallic nanoparticles (also
referred to as small metallic grains) has detected evidence of pairing interactions [1]. In order
to gain an insight into the physical properties of small metallic grains, substantial attention
has been devoted to the analysis of the (reduced) BCS Hamiltonian which is believed to be
appropriate to describe the dynamics of these systems [2]. An important point in this regard
is that the treatment originally proposed by Bardeen, Cooper and Schrieffer for bulk systems,
using variational wavefunctions with an undetermined number of particles (grand canonical
ensemble), is not applicable to the study of a small metallic grain where the number of electrons
remains fixed (canonical ensemble). This aspect has generated activity in analysing the BCS
Hamiltonian under this constraint [3]. Remarkably, an exact solution of the reduced BCS
Hamiltonian was obtained some time ago in a series of works by Richardson and Sherman
[4]. In these papers, the BCS Hamiltonian was studied for the purpose of application to
pairing interactions in nuclear systems, and as such the solution escaped the attention of the
condensed matter physics community for a considerable time. More recently, it was shown
by Cambiaggio, Rivas and Saraceno [5] that the model is also integrable, i.e. there exists a
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set of mutually commuting operators which commute with the Hamiltonian. These features
can be reproduced in the framework of the quantum inverse scattering method (QISM) using
a solution of the Yang–Baxter equation as shown in [6, 7]. This approach has the significant
advantage that the computation of form factors and correlation functions can be undertaken in
this algebraic framework [6, 8].

In the papers [9, 10] Richardson introduced a coupled pairing model for nuclear systems
which accommodates proton–neutron pairing interactions as well as the proton–proton and
neutron–neutron couplings. This model was recently studied in [11]. In this paper, we will
show that the techniques employed in [6, 7] can be applied to this model to show that it is
integrable, and for the determination of the energy spectrum. This formulation also opens the
possibility for the calculation of form factors and correlation functions by algebraic means,
in analogy with the results of [6]. For the present case, the solution is obtained through the
use of a solution of the Yang–Baxter equation associated with the Lie algebra so(5). The
Hamiltonian has the explicit form

H =
D∑
j

εj nj − g

D∑
j,k

(b
†
j (1)bk(1) + b†j (2)bk(2) + b†j (3)bk(3)) (1)

where g is an arbitrary coupling parameter and D is the total number of distinct energy
levels. Above, nj is the number operator for paired nucleons at energy level εj and
b(i)j , b

†
j (i), i = 1, 2, 3 are the annihilation and creation operators for three sets of generalized,

non-commuting, hard-core boson operators satisfying the relations (amongst others)

(b
†
j (i))

2 = 0 i = 1, 2 (b
†
j (3))

3 = 0

[bj (i), bk(l)] = [b†j (i), b
†
k(l)] = [bj (i), b

†
k(l)] = 0 for k �= j.

The three sets of hard-core boson operators correspond to proton–proton, neutron–neutron
and proton–neutron pairing in a nuclear system. Their explicit forms will now be made clear.
Two sets of two-fold degenerate Fermi operators c± and d± and their Hermitian conjugates
are introduced. c± and d± represent the protons and neutrons, the subscripts ± referring to
time-reversed states. The hard-core bosons are realized by

b†(1) = c†+c
†
− b†(2) = d†+d

†
− b†(3) = 1√

2
(c†+d

†
− + d†+c

†
−)

with appropriate definitions for the Hermitian conjugates. The Hamiltonian (1) corresponds
to a special case where the energy level spacings for the protons and neutrons are the same and
the scattering coupling is the same for proton–proton, neutron–neutron and proton–neutron
pairings. In this instance, the Hamiltonian acquires an isospin symmetry which plays an
important role in our analysis below.

The energy levels εj are degenerate. Each level can be empty or occupied by protons
and/or neutrons in two-fold degenerate time-reversed states. This gives the degeneracy of
each level as 24 = 16. However, the above Hamiltonian only scatters paired nucleons giving
rise to a blocking effect (cf, the blocking effect for the BCS model discussed in [2]). For any
energy level which contains an odd number of nucleons, the pairing interaction acts trivially,
and these states can be discarded from the Hilbert space. (Hence, we choose nj to count
the number of paired nucleons at εj , rather than the number of nucleons.) Furthermore, it is
assumed that the proton–neutron pairing is between time-reversed states which are symmetric
under interchange of protons and neutrons. In this case, the pairing interaction is also trivial on
the nontime-reversed paired proton–neutron states and the antisymmetric time-reversed paired
proton–neutron state, giving rise to a five-dimensional space at each level εj on which the
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scattering is non-trivial. (In the language of [9], this Hilbert space is spanned by the seniority-
zero states. In the subsequent paper [10], Richardson extended his results to seniority-one
and -two states. However, we will not consider these cases here.) It is convenient to use the
fundamental representation of the so(5) Lie algebra to construct the local operators acting on
each of these spaces, which we will now discuss.

2. The Lie algebra so(5)

We can construct the fundamental representation of the so(5) Lie algebra in the following
manner. Define m = 6 −m. For 5 × 5 matrices, consider the subset

amn = emn − enm = −anm
where emn denotes the matrix with 1 in the (m, n) position and zeros elsewhere. Note that
amm = 0. We will denote the five-dimensional space on which these operators act by V . The
operators amn close to form the fundamental or defining representation of the Lie algebra so(5)
with commutation relations[

amn , a
p

l

] = δ
p

n a
m
l + δlma

n
p + δn

l
apm + δmp a

l
n (2)

A basis for the Lie algebra is given by the set{
amn : 1 � m < n � 5

}
which gives ten linearly independent generators. Explicitly, the basis generators read

a1
2 = e1

4 − e2
5 a1

3 = e1
3 − e3

5

a1
4 = e1

2 − e4
5 a1

5 = e1
1 − e5

5

a2
3 = e2

3 − e3
4 a2

4 = e2
2 − e4

4

a2
5 = e2

1 − e5
4 a3

4 = e3
2 − e4

3

a3
5 = e3

1 − e5
3 a4

5 = e4
1 − e5

2.

Note that the representation is unitary, and specifically(
amn

)† = anm. (3)

Next, we recall some established results on the representation theory of so(5). For a more
detailed discussion, see for example [12]. The finite-dimensional irreducible representations
of so(5) are uniquely determined by the highest weight labels�1,�2 which are the eigenvalues
of the Cartan elements

h1 = a1
5 h2 = a2

4

acting on the highest weight state. (These operators are self-adjoint and mutually commuting
and so can be diagonalized simultaneously.) The highest weight state is the unique vector v
which vanishes under the action of the raising operators, viz,

a1
2v = a1

3v = a1
4v = a2

3v = 0.

The highest weight labels�1,�2 take integer or half odd-integer values and are subject to the
conditions

�1 � �2 � 0 �1 −�2 ∈ Z.

In the case of the fundamental representation, we have�1 = 1,�2 = 0 and the highest weight
vector is |1〉 ≡ (1, 0, 0, 0, 0)t , with t the matrix transposition operation.
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The so(5) algebra admits a second-order Casimir invariant

C =
5∑
m,n

amn a
n
m (4)

commuting with all elements of so(5), which can be verified explicitly from the commutation
relations (2). Due to Schur’s lemma, on each irreducible finite-dimensional representation the
Casimir element (4) takes a constant eigenvalue, which is given by

χC(�1,�2) = 2(�1(�1 + 3) +�2(�2 + 1)).

For the fundamental representation we clearly have χC(1, 0) = 8.
An important ingredient in the following construction is the existence of a canonical so(3)

subalgebra spanned by the basis elements

L0 = a2
4 L+ = a2

3 L− = a3
4 .

The Casimir operator for this so(3) subalgebra is given by

K = L+L− + L−L+ + (L0)2.

The irreducible finite-dimensional representations of the so(3) algebra have a unique highest
weight vectorwwhich satisfiesL+w = 0. These representations are uniquely characterized by
the eigenvalueµ ofL0 acting onw. The allowable values ofµ are such that it is a non-negative
integer or half odd-integer. The eigenvalue of K on such a representation is given by

χK(µ) = µ(µ + 1).

The realization of this canonical so(3) subalgebra that we give below is referred to as the
isospin algebra in [9].

3. The Yang–Baxter equation and integrability

The basis for constructing an integrable model through the QISM [13] is a solution of the
Yang–Baxter equation,

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) (5)

which is a matrix solution acting on a three-fold tensor product space V ⊗V ⊗V . Above, the
subscripts refer to which two of the three spaces the operator R(u) ∈ End(V ⊗ V ) acts upon.
Solutions of the Yang–Baxter equation associated with representations of Lie algebras are
well known. The R-matrix solution associated with the fundamental representation of so(5)
discussed above takes the following form [14]: set

I =
5∑
m,n

emm ⊗ enn P =
5∑
m,n

emn ⊗ enm Q =
5∑
m,n

emn ⊗ emn .

Then

R(u) = I +
2η

u
P − 2η

u + 3η
Q

provides a solution of (5) with η being a free parameter. This solution is so(5) invariant in that

[R(u), I ⊗ x + x ⊗ I ] = 0
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for any x ∈ so(5). We note the following properties:
(1) Unitarity

R(u)R(−u) =
(
u2 − 4η

u2

)
I ⊗ I

(2) Crossing symmetry

Rt1(−u− 3η) = (I ⊗ A)R(u)(I ⊗ A)

where A is the matrix with elements Amn = δmn and t1 denotes matrix transposition in the first
space of the tensor product.

By the usual procedure of the QISM, we define a transfer matrix acting on the D-fold
tensor product space via

t (u) = Tr0 (G0R0D(u− εD) · · ·R01(u− ε1))

which gives a commuting family satisfying [t (u), t (v)] = 0. Above, Tr0 denotes the trace
taken over an auxiliary space labelled by 0, and G can be any matrix which satisfies

[R(u),G⊗G] = 0.

We choose G = exp
(
αηa1

5

)
for this particular model. Using either the analytic Bethe ansatz,

which exploits the unitarity and crossing symmetry properties [15], or the algebraic Bethe
ansatz developed by Martins and Ramos for the so(n) series [16], the eigenvalues of the
transfer matrix are found to be

�(u) = exp(αη)
D∏
k

(u− εk + 2η)

(u− εk)

M∏
i

(u− vi − η)

(u− vi + η)

+ exp(−αη)
D∏
k

(u− εk + η)

(u− εk + 3η)

M∏
i

(u− vi + 4η)

(u− vi + 2η)
+�0(u)

where �0(u) are the transfer matrix eigenvalues for the R-matrix associated with the spin-1
Babujian–Tahktajan model [17], with inhomogeneities vi . These eigenvalues read

�0(u) =
M∏
i

(u− vi + 3η)

(u− vi + η)

N∏
j

(u−wj)

(u−wj + 2η)
+

M∏
i

(u− vi)

(u− vi + 2η)

N∏
j

(u−wj + 3η)

(u−wj + η)

+
N∏
j

(u−wj + 3η)

(u−wj + η)

(u−wj)

(u−wj + 2η)
.

The parameters vi, wj are required to satisfy the Bethe ansatz equations,

exp(αη)
D∏
k

(vj − εk + η)

(vj − εk − η)
= −

N∏
l

(vj − wl − η)

(vj − wl + η)

M∏
i

(vj − vi + 2η)

(vj − vi − 2η)
(6)

M∏
i

(wj − vi − η)

(wj − vi + η)
= −

N∏
k

(wj −wk − η)

(wj −wk + η)
. (7)

Define the operators

Tj = lim
u→εj

u− εj

2η
t (u) (8)

which satisfy

[Tj , Tk] = 0. (9)
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Explicitly

Tj = GiRjD(εj − εD) · · ·Rj(j+1)(εj − εj+1)Rj(j−1)(εj − εj−1) · · ·Rj1(εj − ε1).

Now, by taking the quasi-classical expansion,

Tj = I + ητj + o(η2) (10)

we find

τj = αψj + 2
D∑
k �=j

φjk

εj − εk

where

φ =
5∑
m,n

emn ⊗ anm

and for ease of notation we set ψ = a1
5. Setting

θ =
5∑
m,n

amn ⊗ anm

=
5∑
m,n

(
emn − enm

) ⊗ anm

=
5∑
m,n

emn ⊗ anm +
∑
m,n

enm ⊗ amn

= 2
5∑
m,n

emn ⊗ anm

= 2φ
shows that we may write

τj = αψj +
D∑
k �=j

θjk

εj − εk
(11)

which satisfy [τj , τk] = 0 in view of (9) and (10). The conserved operators τj provide a set of
generalized Gaudin Hamiltonians [18]. The Gaudin Hamiltonians are recovered in the limit
α → 0.

Consider the action of the so(3) Casimir on the D-fold tensor product space,

K →
D∑
i,j

(
L+
i L

−
j + L−

i L
+
j + L0

i L
0
j

)
.

It is easily deduced that

[K,ψj ] = 0.

When α = 0 (and so G = I ),

[K, τj ] = 0

since in this instance the operators τj are so(5) invariant as a consequence of the so(5)
invariance of the R-matrix. We thus see that

[K, τj ] = 0

in general. The set of operators {τi,K} are mutually commutative and so can be used to
define an integrable Hamiltonian through any function of these operators. With an appropriate
choice, we show below that the pairing Hamiltonian (1) introduced in [9] can be reproduced,
thus establishing the integrability of this model.
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4. Pairing Hamiltonian

First, let us realize the five-dimensional spaceV in terms of the two sets of two-fold degenerate
Fermi operators c±, c

†
± and d±, d

†
± introduced earlier. We make the identifications

|1〉 = |0〉 |2〉 = d†+d
†
−|0〉 |3〉 = 1√

2
(c†+d

†
− + d†+c

†
−)|0〉

|4〉 = c
†
−c

†
+|0〉 |5〉 = c†+c

†
−d

†
+d

†
−|0〉.

Set nc = c
†
+c+ + c†−c−, nd = d

†
+d+ + d†−d− and n = 1/2(nc + nd), which measures the number

of paired fermions. We have the following realization of the so(5) generators,

a4
5 = c

†
−c

†
+ a2

5 = d†+d
†
− a3

4 = 1√
2
(c

†
−d− + c†+d+)

a3
5 = 1√

2
(c†+d

†
− + d†+c

†
−) a1

5 = I − 1
2 (n

c + nd) a2
4 = 1

2 (n
d − nc)

and

a1
4 = (

a2
5

)†
a1

3 = (
a3

5

)†
a2

3 = (
a3

4

)†
a1

2 = (
a4

5

)†
.

The representation of the canonical so(3) subalgebra generated by {L+, L−, L0} is the
isospin algebra of [9], and the operator ψ is a U(1) generator. We can also identify the
generalized hard-core boson operators with certain elements of the so(5) algebra through

b†(1) = −a4
5 b†(2) = a2

5 b†(3) = a3
5

and corresponding relations for the Hermitian conjugates from (3). We may now express
1
2θ = b†(1)⊗ b(1) + b†(2)⊗ b(2) + b†(3)⊗ b(3) + b(1)⊗ b†(1) + b(2)⊗ b†(2)

+ b(3)⊗ b†(3) + L+ ⊗ L− + L− ⊗ L+ + L0 ⊗ L0 + ψ ⊗ ψ.

Define the Hamiltonian

H = −1

α


 D∑

j

(
εj − 3

α

)
τj −K + 4D


 +

1

α3

D∑
j,k

τj τk +
D∑
j

εj

= −
D∑
j

(
εj − 3

α

)
ψj − 1

2α

D∑
j

D∑
k �=j

θjk

+
1

α


 D∑

j,k

ψjψk +K − 4D


 +

D∑
j

εj

= −
D∑
j

(
εj − 3

α

)
ψj − 1

2α

D∑
j,k

θjk +
1

α


 D∑

j,k

ψjψk +K


 +

D∑
j

εj

where in the last line we have used the fact that the so(5) Casimir invariant C takes the
eigenvalue 8 in the five-dimensional representation, as mentioned earlier. Expressing the
so(5) elements in terms of the hard-core boson operators as indicated above yields (1) with
g = 2/α. The Hamiltonian describes two coupled identical BCS models, where, in addition
to the customary pairing (characterized by the operators b†(1), b(1), b†(2), b(2)), fermions
from each BCS system at the same energy level εj and in time-reversed states can pair in
such a fashion that the wavefunction is symmetric under interchange of the two BCS systems
(described by b†(3), b(3)). This shows that the Hamiltonian has a natural interpretation as a
pairing model for nucleons which includes proton–neutron pairing.
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5. Energy spectrum

It remains to determine the eigenvalues of the Hamiltonian, which is achieved by computing
the eigenvalues of the conserved operators. The eigenstates can be labelled by the eigenvalues
of the Cartan elements h1 = a1

5 = �,h2 = a2
4 = L0 acting on the tensor product space. For

each value of M and N which appear in the solution of the Bethe ansatz equations, we find that
the corresponding eigenvalues of the Cartan elements are

�1 = D −M �2 = M −N = µ

or equivalently

n = M nd − nc = 2(M −N).

We begin with the operator K. It follows from the algebraic construction of the Bethe states
due to Martins and Ramos [16] that each Bethe state is a highest weight state with respect to
the so(3) subalgebra. (When α = 0 the Bethe states are highest weight states with respect to
the full so(5) algebra, but generic values of α break this symmetry.) Since K is simply the
so(3) Casimir operator, it takes the eigenvalue χK(M −N) = (M −N)(M −N + 1) on such
a Bethe state.

From (8) and (10) we see that the eigenvalues for τj can be obtained from the quasi-
classical limit of the transfer matrix eigenvalues. They read

λj = α +
D∑
k �=j

2

εj − εk
−

M∑
i

2

εj − vi
(12)

and from the limit of the Bethe ansatz equations (6) and (7) we obtain

α +
D∑
k

2

vj − εk
=

M∑
i �=j

4

vj − vi
+

N∑
l

2

wl − vj

M∑
i

1

wj − vi
=

N∑
k �=j

1

wj −wk
. (13)

Using these Bethe ansatz equations, we can derive the following identities:

N∑
j

M∑
i

1

wj − vi
=

N∑
j

N∑
k �=j

1

wj −wk
= 0

αM +
M∑
j

D∑
k

2

vj − εk
=

M∑
j

M∑
i �=j

4

vi − vj
+

M∑
j

N∑
l

2

wl − vj
= 0

M∑
j

N∑
l

wl

wl − vj
−

M∑
j

N∑
l

vj

wl − vj
= MN

N∑
j

M∑
i

wj

wj − vi
=

N∑
j

N∑
k �=j

wj

wj −wk
= 1

2N(N − 1)

M∑
j

D∑
k

vj

vj − εk
−

M∑
j

D∑
k

εk

vj − εk
= ML

α

M∑
j

vj +
M∑
j

D∑
k

2vj
vj − εk

=
M∑
j

M∑
i �=j

4vj
vj − vi

+
M∑
j

N∑
l

2vj
wl − vj

= 2M(M − 1)− 2MN +N(N − 1).
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We now obtain from these identities
D∑
j

λj = α(D −M)

D∑
j

εj λj = α

D∑
j

εj +D(D − 1)− α

M∑
j

vj + 2M(M − 1) + N(N − 1)− 2M(D +N).

Using these results, we find that the energies are given by

E = −1

α


 D∑

j

εj λj − 3(D −M)− (M −N)(M −N + 1) + 4D




+
1

α3

D∑
j,k

λjλk +
D∑
j

εj =
M∑
j

vj .

This energy expression shows that the roots {vj } of the Bethe ansatz equations are simply the
quasi-particle excitation energies. It is interesting to note in the caseN = 0 ⇒ nc = 0, where
the model describes a single reduced BCS system since there is only one type of nucleon, the
Bethe ansatz equations and energy expression coincide with those obtained by Richardson and
Sherman [4].

Finally, it is necessary to compare our results with those obtained by Richardson [9], in
which the following Bethe ansatz equations were obtained,

1

g
+

D∑
k

1

vj − εk
= M(M − 3) + (M −N)(M −N + 1)

M(M − 1)

M∑
i �=j

1

vj − vi
(14)

and are obviously different from our results. The explanation for this difference stems from
the fact that the ansätze adopted for the eigenstate wavefunctions are different in each case.
Richardson chose wavefunctions which have eigenvalue zero under the action of the isospin
operator L0. As we have indicated above, the states we construct are highest weight states
with respect to the isospin algebra. An important open problem is to prove the equivalence of
these two solutions.

6. Conclusion

We have shown, by using the QISM, that the coupled BCS Hamiltonian proposed by
Richardson [9] to accommodate proton–neutron pairing in nuclear systems is integrable.
We have also determined expressions for the energy eigenvalues of the model in terms of a
Bethe ansatz solution of coupled equations. It should be emphasized that although the model
studied here is based on a specific Lie algebra and representation, the construction that we
have employed to demonstrate integrability is entirely general. It can be equally applied to any
representation of any Lie algebra or superalgebra, to yield a vast class of integrable systems.
For a recent example based on the spin-1 representation of the so(3) algebra see [19].

An interesting question to ask is whether this solution is complete, i.e. are all energy
levels obtained? It is well known that for many Bethe ansatz solvable models where there is an
underlying Lie algebra symmetry the eigenstates are highest weight states with respect to this
algebra [20–22]. By computing the dimensions of each multiplet generated by these highest
weight states and then employing a combinatorial argument, completeness can be proved.

For the present model, where the R-matrix solution has so(5) symmetry, this symmetry
is broken in the construction of the transfer matrix by the inclusion of the operator G, and
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an so(3) symmetry (isospin) remains for the conserved operators τj . The degeneracies of
the eigenvalues can be classified in terms of so(3) multiplets. In the α → 0 limit, the so(5)
symmetry is restored and we find that the Bethe states are so(5) highest weight states, so there
is an increase in the degeneracy of each eigenvalue at this point, or equivalently, a decrease in
the number of distinct eigenvalues. Fortunately, the Bethe ansatz equations (13) admit more
solutions for generic values of α than the α = 0 case and automatically accommodate this
facet. This is easily illustrated in the instance D = 2,M = 1, N = 0, in which case we need
only solve

α +
2

v − ε1
+

2

v − ε2
= 0. (15)

For non-zero α, this is a quadratic equation with two solutions for v. When α is zero, the
equation is linear with the unique finite solution v = (ε1 +ε2)/2. (The equation is also satisfied
by v = ∞ which is the limit of one solution of (15) as α → 0. However, such infinite
solutions are trivial in the sense that they do not contribute to the eigenvalues (12) for the
conserved operators.) For general values of D with M = 1, N = 0, (13) gives rise to a
polynomial equation of order D for α �= 0, but this equation reduces to order (D − 1) when
α = 0. Whether the Bethe ansatz solutions give the complete spectrum for generic α is an
open problem still to be solved, but the discussion above shows that it is possible since the
breaking of the so(5) symmetry to so(3) is accompanied by an increase in the number of
solutions to the Bethe ansatz equations. For the purpose of counting the states, the results
discussed in [23] may be appropriate.

A final aspect for consideration is the possibility to compute form factors and correlation
functions for this model. By rederiving the solution in the framework of the QISM, we hope
to motivate further studies that are necessary for this task, such as an analogue of Slavnov’s
formula for wavefunction scalar products, which is well known for su(2) models [24].
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